Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Planta ; 252(1): 8, 2020 Jun 27.
Article in English | MEDLINE | ID: mdl-32594356

ABSTRACT

MAIN CONCLUSION: Coating maize seeds with the microbial plant protection product Trichoderma asperellum strain T34 is an effective form of inoculation that enhances plant performance when faced with drought stress, and it improves nutrient and kernel parameters differently in drought and non-stressed conditions. Drought is currently one of the biggest threats to maize production. Trichoderma spp. is mainly used in agriculture as plant protection product with secondary beneficial effects on plants: improved growth, nutrient uptake and plant immunity. Here, we studied the physiological performance of maize plants under two different water regimes (fully irrigated and drought conditions) and three different seed treatments: application of Trichoderma asperellum strain T34, application of a chemical fungicide (CELEST XL) or the combination of both. Regardless of water regime, T34 treatment improved kernel P and C, kernel number and dry weight. Higher populations of T34 on the rhizosphere (T34 treatment) alleviated water stress better than lower T34 populations (T34+Q treatment). Under drought, T34 treatment improved leaf relative water content, water use efficiency, PSII maximum efficiency and photosynthesis. T34-treated maize seeds maintained sufficient T34 populations to alleviate drought throughout crop development suggesting an optimal dose of 104 and 105 colony forming units g-1 dry weight of rhizosphere under the studied conditions. This work helps to demonstrate the beneficial interaction between T. asperellum strain T34 and maize plants under drought.


Subject(s)
Hypocreales/physiology , Zea mays/microbiology , Agriculture , Droughts , Photosynthesis , Plant Leaves/microbiology , Plant Leaves/physiology , Seeds/microbiology , Seeds/physiology , Stress, Physiological , Water/physiology , Zea mays/physiology
2.
Genome Announc ; 3(4)2015 Aug 27.
Article in English | MEDLINE | ID: mdl-26316631

ABSTRACT

The genome sequence for Microbacterium sp. strain 3J1, a desiccation-tolerant organism isolated from the Nerium oleander rhizosphere, is reported here. The genome is estimated to be approximately 3.5 Mb in size, with an average G+C content of 67.7% and a predicted number of protein-coding sequences of 3,310.

3.
Genome Announc ; 3(3)2015 Jun 11.
Article in English | MEDLINE | ID: mdl-26067978

ABSTRACT

Arthrobacter koreensis 5J12A is a desiccation-tolerant organism isolated from the Nerium oleander rhizosphere. Here, we report its genome sequence, which may shed light on its role in plant growth promotion. This is believed to be the first published genome of a desiccation-tolerant plant growth promoter from the genus Arthrobacter.

SELECTION OF CITATIONS
SEARCH DETAIL
...